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Abstract Most estimates of the skill of atmospheric
general circulation models (AGCMs) for forecasting
seasonal climate anomalies have been based on simula-
tions with actual observed sea surface temperatures
(SSTs) as lower boundary forcing. Similarly estimates of
the climatological response characteristics of AGCMs
used for seasonal-to-interannual climate prediction
generally rest on historical simulations using ‘‘perfect’’
SST forecasts. This work examines the errors and biases
introduced into the seasonal precipitation response of an
AGCM forced with persisted SST anomalies, which are
generally considered to constitute a good prediction of
SST in the first three-month season. The added uncer-
tainty introduced by the persisted SST anomalies
weakens, and in some cases nullifies, the skill of atmo-
spheric predictions that is possible given perfect SST
forcing. The use of persisted SST anomalies also leads to
changes in local signal-to-noise characteristics. Thus, it
is argued that seasonal-to-interannual forecasts using
AGCMs should be interpreted relative to historical runs
that were subject to the same strategy of boundary
forcing used in the current forecast in order to properly
account for errors and biases introduced by the partic-
ular SST prediction strategy. Two case studies are ex-
amined to illustrate how the sensitivity of the climate
response to predicted SSTs may be used as a diagnostic
to suggest improvements to the predicted SSTs.

1 Introduction

The predictability of seasonal climate anomalies results
primarily from the influence of slowly evolving bound-
ary conditions, and most notably sea-surface tempera-
tures (SSTs), on the atmospheric circulation (e.g.
Bengtsson et al. 1993; Palmer and Anderson 1994;
Goddard et al. 2001). Because of feedbacks between the
ocean and the atmosphere, the coupled system may be
predictable in some regions of the tropics a year or more
in advance (Barnston et al. 1994; Latif et al. 1994, 1998;
Neelin et al. 1998), although operational forecast skill is
more realistically limited to lead-times of a few months
(Barnston et al. 1999; Landsea and Knaff 2000; Mason
and Mimmack 2002). At shorter lead-times of about
three months or less, but beyond the period in which
forecast skill from initial conditions remains discernible
(Brankovic et al. 1990, 1994; Brankovic and Palmer
2000), changes in the boundary conditions are suffi-
ciently slow compared to the predictability limit for the
atmosphere alone that seasonal climate forecasting is
possible even in the absence of detailed projections of
the evolution of the boundary layer. Throughout much
of the tropical oceans, and in some areas of the mid-
latitudes, the autocorrelation between monthly SST
anomalies (SSTAs) remains greater than 0.5 at lags of
six months or more (Fig. 1). Because the ocean is more
slowly evolving than the atmosphere, the assumption
that current anomalous conditions will persist over the
next season provides an appropriate forecast of oceanic
conditions for the next few months in many regions. Out
to 3 months lead even the most sophisticated SST
forecast models do not beat predictions given by per-
sistent SSTAs for much of the tropical oceans (Latif et al.
1994, 1998; Stockdale et al. 1998), with perhaps the ex-
ception of some seasons during which an ENSO event is
developing in the tropical Pacific. In fact, several
national and international meteorological centers use a
persistence forecast for SSTA in producing their first
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season climate forecasts (e.g. Australia’s Bureau of
Meteorology, Frederiksen et al. 2001; Canadian Mete-
orological Centre, Kharin and Zwiers 2001; Interna-
tional Research Institute for Climate Prediction, Mason
et al. 1999.
Although boundary conditions provide predictability

of the atmosphere at seasonal time scales, the inherent
variability of the atmosphere requires seasonal climate
forecasts be expressed probabilistically (e.g. Barnett
1995; Kumar and Hoerling 1995; Mason et al. 1999;
Goddard et al. 2001). Forecast ensembles are a standard
method of estimating the uncertainty in seasonal climate
by sampling the distribution of possible climate out-
comes. However, ensembles may not provide reliable
estimates of forecast uncertainty due to model errors; in
other words, the chaotic evolution of the atmosphere is
not the only source of forecast uncertainty. Systematic
model errors can be corrected statistically (Ward and
Navarra 1997; Feddersen et al. 1999; Mason et al. 1999),
but these errors are likely to be conditional upon the
state of the boundary forcing (Mo and Wang 1995),
which, in turn, is subject to its own forecast uncertainty.
Most estimates of the forecast skill and structures of
systematic forecast errors of AGCMs are based on
model simulations using observed SSTs (e.g. Brankovic
et al. 1994; Ferranti et al. 1994; Brankovic and Palmer
1997; Mason et al. 1999). Since model simulations forced
with observed SSTs provide an indication of model

performance assuming perfect SST forecasts, estimates
of the skill of operational model predictions are gener-
ally overestimated, and model systematic errors intro-
duced by the predicted SSTs may not be estimated at all.
It is important to know what uncertainties in the fore-
casts of seasonal climate result from imperfect SST
forecasts (Barnett 1995).
In this study, the contributions of imperfect SST

forecasts to seasonal forecast uncertainties are investi-
gated. The simplest possible SST forecast, that of per-
sisted anomalies, is used because of its relative skill in
representing the future SSTAs at short lead times and its
relatively wide use in research and operational forecasts.
The focus here is on identifying possible causes for loss
of skill in forecasting precipitation that may arise from
using persisted SSTAs as forcing for dynamical atmo-
spheric models. Although some of the results are specific
to the particular choice of SSTA prediction method, the
ideas and methods of identifying systematic impacts of
imperfectly predicted SSTA on climate predictions can
be applied to any set of retrospective dynamical fore-
casts. Because of its large social implications for many
parts of the world, attention is focused on potential
prediction skill of precipitation. Comparisons between
the precipitation hindcasts and simulations are used to
identify where skill is lost as a result of imperfect SST
forecasts, and hence to identify key ocean areas where
short lead-time SST forecasts need to be improved.

Fig. 1a–d. Number of months from initial condition when lagged auto-correlation of SSTA drops below 0.5. Contour at 4 months
indicates regions where the lagged auto-correlation of SSTA is greater than 0.5 through the end of the first forecast season
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2 Data and methods

2.1 Model and experimental design

The ensemble model experiments used in this analysis were run
using the ECHAM3.6 atmospheric general circulation model
(AGCM), configured at spectral truncation T42 (approximately
2.8� horizontal resolution) and with 18 vertical levels. Further de-
tails of this AGCM can be found in Deutches Klimarechenzentrum
(1992).

Two sets of ensembles were created that differ only in their
prescribed SST forcing. ‘‘Simulation’’ runs were generated by
forcing the AGCM with observed simultaneous monthly-mean
SSTs. An ensemble of ten simulation runs is available for the pe-
riod 1950-present. The initial conditions of the ensemble members
differed from each other by one model-day of weather when the
simulation began with 1949. The integrations proceeded continu-
ously from 1949 to present-day conditions, and the first year was
discarded. ‘‘Hindcast’’ runs refer to forecasts that were made ret-
rospectively for the purpose of assessing the forecast method (Ward
et al. 1993). The hindcasts were forced by persisting the observed
SSTA from one month through the following 3-month season. The
persisted anomaly is added to the evolving climatological cycle of
SST to obtain the full SST forcing. For the hindcast runs, five
member ensembles were generated. The hindcasts used initial
conditions taken from restart files of the simulation ensemble
members, consistent with the operational seasonal forecasts made
at the International Research Institute for climate prediction
(Mason et al. 1999). Thus the initial conditions for both sets of
experiments are identical. Hindcast ensembles were made for four
non-overlapping seasons: the March–May (MAM) hindcasts use
persisted SSTA from February; the June–August (JJA) hindcasts
use persisted SSTA from May; the September–November (SON)
hindcasts use persisted SSTA from August; and, the December–
February (DJF) hindcasts use persisted SSTA from November.
These seasonal hindcasts cover the 27-year period 1970–1996
(1970/71–1996/97 for DJF).

The analysis period is that common to both sets of AGCM
runs: 1970–1996. This 27-year long record is used to identify re-
gions that are sensitive to errors introduced by persisted SSTA
forcing of the AGCM. The performance analysis of both ensemble
sets considers the ensemble-mean response of the model. Since the
hindcasts have only five members, while the simulations contain 10
members, for the sake of a fairer comparison the ensemble-mean of
the simulation was calculated using only five of the available
members. A large pool of other potential combinations of five
ensemble members for the simulations provides an estimate of the
range in skill due to the model’s uncertainty in the ensemble-mean
response when the number of ensemble members is insufficient to
resolve the forecast probability distribution (Kumar et al. 2001).
The results in Sect. 3 shown from the random selection of five
simulation members are representative of the median in the range
of skill levels locally. Results from the performance comparisons
are presented only for the JJA and SON seasons, in part for brevity
and because the case studies of Sect. 3.3 involve these two seasons.
Noteworthy features of the skill comparisons from MAM and DJF
will be mentioned but not shown. For a complete set of figures
showing results from all seasons, see Goddard and Mason (2001).

2.2 Observational data

SST: The Reynold’s observed SST dataset from the Climate Pre-
diction Center of the National Weather Service (Smith et al. 1996)
was used as boundary forcing in the AGCM experiments. These
SST data are provided as monthly averages on a 2� grid. The data
were interpolated spatially to the effective grid resolution of T42,
and then linearly interpolated to daily values as the AGCM stepped
through the integrations.
Precipitation: The precipitation verification data were obtained
from the Climate Research Unit of the University of East Anglia.

The observed climatological data covering the 1961–1990 period
comes from up to 19,800 stations, which are mapped onto a 0.5�
grid over land treating elevation dependency explicitly. Grid
points are filled in using thin plate splines in regions where rain
gauges are missing or sparse (New et al. 1999). The monthly
anomalies, from a less dense network of stations, are estimated
locally and then combined with the high-resolution climatology to
obtain the total precipitation fields. In regions of sparse data
coverage of anomalies, most notably over parts of central Africa
and the Middle East, angular distance weighting was used to
interpolate the values spatially (New et al. 2000). The final gridded
data set contains no missing data. The high resolution data were
up-scaled to the T42 grid for comparison with the AGCM
precipitation fields.

3 Results

3.1 Simulation versus hindcast skill

In an operational forecast setting, the skill of rainfall
predictions from an AGCM is unlikely to be as great as
the potential prediction skill estimated from simulations
forced with the simultaneous observed SSTs. The loss of
skill in the operational context is greatest in regions
where the climate is sensitive to errors in predicted
SSTAs. The sensitivity of the ECHAM3 AGCM to
persisted SSTAs is estimated by comparing the ensem-
ble-mean anomaly correlations from the simulation to
those from the hindcast. To the extent that the magni-
tude or structure of dynamically important SSTAs
evolves through the season in any particular year, per-
sisted SSTAs will not accurately reflect the observed
forcing of the system. An erroneous signal will then be
generated in the AGCM’s climate, and a loss of skill will
be reflected in weakened anomaly correlations for the
hindcasts compared to the simulations.
The anomaly correlations for the simulations indicate

that potential prediction skill is high in only very few
regions for any one season in this model (Fig. 2a, b, top
panels). This weakness in the predictability of precipi-
tation is a typical property of current state-of-the-art
AGCMs (e.g., Peng et al. 2000), and may be an inherent
property of precipitation variability for much of the
globe. Despite the poor skill globally, the tropics clearly
display potential skill (Fig. 2a, b, top panels), with the
highest correlations typically found over northern South
America, tropical Africa, the Indonesia region, and the
tropical Pacific island states.
In Fig. 2a, b, the bottom panels show the anomaly

correlations for the hindcasts for JJA and SON,
respectively. The same coherent regions of skill identi-
fied in the simulations are, in general, captured by the
persisted SSTA hindcasts, which confirms that using
persisted SSTA constitutes a reasonable SST prediction
for one-season lead time (similar results are found for
other seasons, Goddard and Mason 2001). However,
even though the hindcasts replicate much of the re-
gional prediction skill, the anomaly correlation coeffi-
cients are often less than were obtained with the
simulations.
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Some of the least affected regions are found outside
the tropics. However, in all seasons, little skill for pre-
cipitation exists outside the tropics making it difficult to
draw any conclusions on the relative impact of persisted
SSTA on precipitation predictions in the mid-latitudes.
There is some evidence that skill actually improves in the
mid-latitudes in the hindcasts, such as over Western
Europe in SON (Fig. 2b) and over North America in
DJF (not shown). Although at least some of these cases
are likely to be only an artifact of short time-series and
few ensemble members, this phenomenon may deserve
additional attention.
Regions where climate variability is consistently

impacted by ENSO (Mason and Goddard 2001) are also
not greatly affected by deficiencies in the persisted SSTA
and show only a modest reduction in skill. For example
during DJF (not shown), when the magnitude of ENSO
SSTA tends to peak, the hindcast precipitation agrees
with the observations nearly as well as the simulations
over South Africa, northern South America and equa-
torial Africa. Also, although the anomaly correlations
are weaker over the Indonesian region in DJF, most of
the skill reduction is seen over western Indonesia with
very little change over eastern Indonesia and the western
Pacific islands. Even in MAM (not shown), when ENSO
associated SSTA commonly reverts to neutral or
changes sign, precipitation skill over coastal Ecuador
and northern Peru, although weaker, still exists, and the
same is seen for northeastern Brazil, although rainfall

variability in this region depends strongly on Atlantic
SSTA patterns as well.
The most dramatic losses in skill occur over regions

directly affected by variability in the tropical Atlantic
and Indian Oceans. In some cases, such as over western
Africa in June–August, and eastern Africa in Septem-
ber–November, large and coherent regions in which the
model had good simulation skill have greatly weakened
hindcast skill. The loss of prediction skill over these two
areas is examined in further detail later.

3.2 Changes in the model’s climate signal and noise

In addition to reductions in skill because of erroneous
boundary forcing, forecast quality may be adversely
affected by changes in characteristics of the model cli-
matology under different approaches to prescribing
SSTs. Relative to simulations forced with the actual
simultaneous observed SSTAs, the climate predictions
may contain systematic biases in the model’s local signal
and noise characteristics.
Prediction biases in the seasonal response of the

model can impact profoundly the interpretation of the
predicted anomalies. The model’s ensemble distribution
for a particular season and year acquires meaning only
relative to the climatological response of the ensemble
members over many previous years for that same season.
Thus the ensemble distribution for a particular season

Fig. 2. Anomaly correlation maps comparing precipitation anom-
alies from observations against those from AGCM experiments
(upper panel: simulation runs; lower panel: hindcast runs), for a JJA
1970–1996; and b SON 1970–1996. Contour interval is 0.2,

0-contour is omitted. Shaded areas indicate local statistical
significance exceeding 90% confidence, estimated by bootstrap
resampling
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should be interpreted relative to historical runs that were
subject to a similar boundary forcing strategy. Examples
given illustrate how the model’s response could be mis-
interpreted if a prediction forced with persisted SSTAs
were judged relative to the response characteristics of the
simulation runs.
Signal and noise are two characteristics typically used

to describe model response. In terms of the ensemble
distribution, the signal represents the mean shift of the
distribution, whereas the noise represents the spread of
possible outcomes about that mean response. For an
AGCM the model signal can be estimated by the en-
semble-mean variance, which represents the model’s re-
peatable response to a given SST boundary condition
(i.e., that in a particular season and year), averaged over
many years (Anderson and Stern 1996; Zwiers 1996;
Rowell 1998). The signal, or externally forced variance,
is defined here as:

r2ext ¼
1

ðn� 1Þ
Xn
i¼1

ðAi � ½A�Þ2 ; ð1Þ

where Ai is the ensemble-mean value for a particular
year, i, which summed over all n years, gives the en-
semble-mean climatological value, [A]. Model noise, or
internally forced variance, refers to the average devia-
tion of the individual ensemble members from the
model’s mean response. Noise is defined here as:

r2int ¼
1

ðn� 1Þ
Xn
i¼1

1

m

Xm
j¼1

ðaij � AiÞ2
( )

; ð2Þ

where aij represents the individual ensemble member, j,
for a particular year, i, which summed over all ensemble
members, m, leads to the ensemble mean value, Ai.
The time-averaged signal-to-noise ratio is often used

to represent model potential predictability (Madden
1976; Lau 1985; Chervin 1986; Shea and Madden 1990;
Rowell 1998). When the external variance forced by the
boundary conditions exceeds the internal variance of the
atmosphere, it implies that a deterministic signal can be
discerned above the noise in the system and may be
predictable. This type of potential predictability does
not necessarily indicate skill: the model may respond to
boundary forcing in a manner inconsistent with obser-
vations. In nature, it is not possible to separate the
boundary forced ‘signal’ from the internal ‘noise’ of the
atmosphere, because observations yield only one real-
ization. Thus, these components of the variability must
be approximated using an ensemble of AGCM integra-
tions. As the number of ensemble members increases,
this approximation should become better, although the
estimated signal-to-noise ratio will remain specific to
the particular AGCM (e.g., Shukla et al. 2000). With the
small number of ensemble members used for the exper-
iments here, the noise patterns are likely to be partly
projected onto the signal patterns (Rowell 1998, Venzke
et al. 1999), but the assumption here is that this

contamination is similar enough between the two ex-
periments that comparisons are valid.
Figures 3 and 4 show the average signal-to-noise

characteristics of the precipitation from the simulation
and hindcast experiments for two cases. Although sig-
nal-to-noise ratios are often used to indicate potential
predictability in a model, regional changes in signal-to-
noise do not appear responsible for the loss of skill in the
ECHAM3.6 runs. Rather, relative to the simulations,
the persisted SSTA runs typically yield a stronger signal-
to-noise ratio for precipitation in regions where corre-
lation skill is weaker. Over the tropical Atlantic in JJA,
the AGCM responds much more dramatically to the
persisted SSTAs than to the simultaneous anomalies,
but the overall internal variance remains effectively un-
changed (not shown). The strengthened signal in the
hindcast experiment leads to an increase in the signal-
to-noise ratio of precipitation over parts of coastal
western Africa by a factor of 5 or more compared to the
simulation (Fig. 3a, b). As one might expect, larger local
SSTAs, in May relative to JJA, are likely responsible for
much of the increase in local signal-to-noise (Fig. 3c, d).
Similarly, the external variance for SON over the Indian
Ocean is strengthened given the persisted SSTAs, par-
ticularly in the Indonesian region, while the overall
magnitude of the internal variance does not change (not
shown). Again, the signal-to-noise ratio is greater in the
hindcast experiment, particularly towards the eastern
and western edges of the Indian Ocean basin (Fig. 4a,
b). These increases in SON signal-to-noise over the
Indian Ocean region also coincide crudely with local
increases in the strength of interannual SSTA variance
(Fig. 4c, d), but less coherently than was seen over the
tropical Atlantic in JJA.
Biases in both the strength and placement of the

hindcast signal, relative to that from the simulations,
must result, at least in part, from systematic errors in the
characteristics of the SSTAs prescribed in the hindcasts.
How SST errors relate physically to errors in the model’s
climate response is explored in the following section for
the two case studies highlighted: western Africa in JJA
and eastern Africa and Indonesia for SON.

3.3 Case studies

3.3.1 JJA – Western Africa and the tropical Atlantic
Ocean

Western Africa during the JJA season exhibits one of the
most severe examples of loss in prediction skill using
persisted SSTA (Fig. 2a). The simulation using the ac-
tual SSTA demonstrates statistically significant skill
over much of western Africa, particularly over the Gulf
of Guinea region. When predicting JJA precipitation
using persisted SSTA from May observations, the size of
the region over which there is prediction skill decreases
greatly, and for the small region of remaining skill the
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anomaly correlation is 20–50% weaker than that of the
simulations.
As a first order approximation of the systematic

SSTA errors resulting in this loss of prediction skill,
canonical correlation analysis (CCA) was applied to the
seasonally averaged difference fields of SST and rainfall.
The difference fields are defined as the actual minus the
predicted (i.e., persisted) SSTA and as the ensemble
mean simulation rainfall minus the hindcast rainfall.
The CCA maximizes correlation between the two fields
using weighted combinations of the first five EOFs from
each of the difference fields. For the SST difference,
dSSTA, the EOFs were constructed using covariance
matrices, which emphasize the magnitude of the errors
in the SST forcing. For the precipitation difference field,
dPCPA, correlation matrices were used for the EOFs,
which highlight any systematic shift in rainfall patterns
regardless of the strength of the differences.

The first CCA mode shows a meridional structure in
both SSTA and precipitation (over land) differences
(Fig. 5). This structure implies that when predicted
SSTA is too warm in the equatorial region and too cool
off the west coast of Africa at approximately 10�N there
is a southward shift of the AGCM precipitation re-
sponse. Using persisted SSTA containing this error
pattern, more rainfall appears in the Gulf of Guinea
region and less to the north than would have been
simulated with the actual SSTA. The principal compo-
nent time series of dPCPA and dSSTA for this first CCA
mode correlate at 0.84 and describe 15% of the dPCPA
variance and 17% of the dSSTA variance. A similar
pattern emerges from a CCA analysis of the actual
precipitation variability related to SST variability in
both the observations and the AGCM over this region
(not shown), with similar correlation between the pat-
tern time series, and a similar fraction of variance

Fig. 3a–d. Ratio of interannual ensemble-mean variance (‘‘signal’’)
to average intra-ensemble variance (‘‘noise’’) for precipitation over
the tropical Atlantic Ocean for JJA 1970–1996. a Simulation runs.
b Hindcast runs. Contour interval is 2. Shading indicates regions
where signal-to-noise ratio exceeds one, suggesting potential

predictability. Interannual variance of SSTAs averaged over c May
and d June–July–August, associatedwith the signal-to-noise patterns
in a and b, respectively. Contour interval is 0.1 �C2. Values greater
than 0.2 are shaded
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explained. The similarity between the error and actual
CCA analyses is not surprising because much of the
precipitation variability for JJA in this region is gov-
erned by the anomalous position of the ITCZ over the
Atlantic (e.g., Ward 1998). Climatologically, the ITCZ
migrates northward in June–August and reaches its
northern most latitude by the end of the season. If
equatorial SST is warmer than normal, equatorial sea
level pressure will be lower than normal, and anomalous
equatorward flow will be induced. This anomalous
tropical circulation causes the ITCZ to reside closer to
the equator than normal for this season, bringing higher
rainfall total to the Gulf of Guinea region and lower
rainfall over the Sahel (Lamb 1978a, b; Lough 1986;
Ward 1998).
Unfortunately, even though the first mode of the er-

ror fields is similar to the first mode of the full vari-
ability, this structure does not appear as a cleanly
evolving mode during any particular JJA season. The

intra-seasonal SSTA field in the tropical Atlantic con-
tains considerable noise, fluctuating greatly from one
month to the next, as reflected in the weak persistence of
SSTA at this time of year (Fig. 1b). Methods used to
predict tropical Atlantic SST have currently been unable
to improve upon a forecast of persistence on and to the
south of the equator for any season (Penland and
Matrosova 1998; Landman and Mason 2001; Repelli
and Nobre 2002).
The first CCA mode of the SSTA error is largely due

to seasonal changes in local variance of monthly mean
SSTA. In May, the SSTA variance shows a local maxi-
mum off the west coast of Africa at approximately 10�N
(Fig. 6a). The strength of the SSTAs in that region
typically drops off dramatically by June, and remains
negligible throughout JJA (Fig. 6b–d). Conversely, the
equatorial variance of SSTA is small in May, but grows
in June and July. Thus persisting May SSTA through
JJA in the tropical Atlantic imposes SSTA signals that

Fig. 4a–d. Similar to Fig. 3, but for SON 1970–1996 over the Indian Ocean
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are likely to disappear, or at least weaken, in the coming
forecast season north of the equator and does not
specify signals that may develop during the forecast
season on and to the south of the equator.
The difference in signal-to-noise ratios between the

simulation and hindcast runs also may result in part
from the seasonal changes in the interannual variance of
local SSTA. Due to the month-to-month noise in the
tropical Atlantic SSTA, the equatorial variance of May
SSTA is very similar to that of the JJA seasonal average,
even though the interannual variance of SSTA during
June and July is stronger (Fig. 6). Therefore, the
stronger precipitation signal generated by the hindcast
experiments (Fig. 3) must be due to at least one of two
possible causes. First, the presence of the stronger SSTA
variance in May seen off the western coast of Africa
(Fig. 6a) and known to be associated with the precipi-
tation error between the two experiments (Fig. 5) may
be overly influencing the JJA forecasts. In this case,
merely damping the observed SSTA in that region
should bring the signal into better agreement with that
of the simulation. Second, the tropical precipitation may
be exhibiting a non-linear response to equatorial SSTA.
The equatorial region exerts a significant influence on
the differences in precipitation over the West Africa
region (Fig. 5). If it is assumed that the equatorial SSTA
dominates the precipitation variability and that precip-
itation anomalies are linearly related to SSTA, then the
rainfall signals should be approximately equal if the

Fig. 5. First mode of canonical correlation Analysis showing
dominant pattern of precipitation errors (over land) generated by
dominant pattern of SSTA error for JJA 1970–1996 over the
tropical Atlantic/western Africa region. dSSTA = observed JJA
SSTA – persisted May SSTA; dPCPA = simulated PCPA –
hindcast PCPA. Darker (lighter) shading and solid (dashed) contours
indicate suggest positive (negative) errors in SSTA over ocean and
positive (negative) precipitation errors over land. Maps are
invariant to change in overall sign. Contour interval is 0.1 for
both dSSTA and dPCPA patterns in relative (normalized) units

Fig. 6a–e. Interannual variance of SSTA for 1970–1996. a May;
b June; c July; d August; e June–July–August average. Contour
interval is 0.2 �C2, shaded for values greater than 0.2
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SSTA variance is approximately equal in both experi-
ments. But, such equivalence is not seen in the precipi-
tation variance even though the variance fields of the
prescribed seasonal SSTA are of similar magnitude in
the equatorial region. These two hypotheses require
explicit experimentation, however, before their relative
impacts can be determined.
The sensitivity of the Atlantic ITCZ to errors in the

SSTA also affects the rainfall signal over northern South
America. However compared to western Africa, the
simulation skill over South America is higher and covers
a larger area so that a reduction in skill of similar
magnitude to that exhibited over western Africa still
leaves a substantial region with significant operational
predictability under this method of SST prediction.
This case study has focused on the season JJA for

western Africa; however, JAS more accurately defines
the rainy season for the Sahel region of western Africa.
Ward et al. (1993) showed that AGCM predictions over
the Sahel region for JAS improved when June SSTA was
persisted instead of May SSTA. This result is consistent
with the climatological evolution of SSTA variance
patterns (Fig. 6). Thus shorter-lead forecasts made at
the beginning of the season may prove more useful to
decision makers. The main caveat from the preceding
results is that potential prediction skill cannot currently
be realized over this region from forecasts produced
using May observations, or earlier, due to lack of fore-
cast skill for equatorial/south tropical Atlantic SSTA.

3.3.2 SON – eastern Africa and the Indian Ocean

Persisted SSTAs lead to significant reduction in skill over
eastern Africa also, particularly over Kenya and northern
Tanzania during the SON season (Fig. 2b). This season
approximates the rainy season over the Greater Horn of
Africa region, which peaks in October–December (OND)
for Kenya, being slightly earlier to the north and later to
the south of Kenya as the ITCZ migrates southward
during the end of the year. Variability of the OND rainy
season over East Africa has a well-known statistical re-
lationship with ENSO (e.g., Ropelewski and Halpert
1987; Ogallo 1988; Beltrando 1990; Nicholson and Kim
1997; Mason and Goddard 2001). For the SOND season,
the most robust teleconnection with ENSO is experienced
in October and November when large-scale OLR anom-
alies are found over the Indian Ocean sector in phase with
those over the tropical Pacific and out of phase with those
over the Maritime continent (Mutai and Ward 2000). In
September the large-scale OLR structure does not appear
over the Indian Ocean sector, possibly because of an
influence of the seasonal background state of the
atmosphere in which the southwesterly monsoon flow
over the northwestern Indian Ocean holds the main
convective centers north of the equator and thus weak-
ening the potential role of equatorial atmospheric
dynamics in forcing the OLR teleconnection structures
(Mutai and Ward 2000).

Although East Africa and the Indian Ocean sector do
exhibit climate variability associated with ENSO, mod-
eling studies have shown that appropriate changes in
Indian Ocean SST are necessary to reproduce the correct
rainfall variability over East Africa at the end of the
year. Using observational data alone, it is difficult to
separate the importance of ENSO relative to that of the
Indian Ocean since SST variability in these two ocean
basins is highly correlated, with the tropical Pacific
variability leading by approximately three months (e.g.,
Goddard and Graham 1999; Venzke et al. 2000). When
the forcings from the two basins are isolated, it can be
shown that tropical Pacific SSTAs applied to this
AGCM without the appropriate anomalies in the Indian
Ocean lead to a rainfall response over East Africa op-
posite to that obtained with full global SST or even
Indian Ocean SSTAs alone (Goddard and Graham
1999).
The three-month lead time of tropical Pacific to

Indian Ocean variability combined with the tendency of
ENSO evolution to phase-lock to the seasonal cycle
implies that SON is an important season for the evolu-
tion of SSTAs in the Indian Ocean basin. Generally,
ENSO events first appear and begin to grow in the
Northern Hemisphere Spring. Assuming that the lead-
time between the Pacific and the Indian Ocean is rela-
tively independent of the time of year, August SSTA in
the Indian Ocean will reflect May or June conditions in
the tropical Pacific when the ENSO event is just begin-
ning to evolve. In November, the SSTA in the Indian
Ocean will reflect August/September conditions in the
tropical Pacific when the ENSO event is fairly mature.
Thus rapid growth of ENSO, usually seen in the middle
of the year, will appear as rapid development of SSTAs
in the Indian Ocean only during the later part of the year
(i.e., SON). Figure 7a illustrates the differences in per-
sistence characteristics of the Indian Ocean and Pacific
Ocean described. By August, the SSTAs in the tropical
Pacific are well established, and their persistence is high
through the end of the year when the magnitude of
ENSO SSTA usually peaks. On the other hand, SSTA in
the Indian Ocean is evolving at this time and neither the
strength nor pattern of SSTA seen in August is persis-
tent through SON. This is particularly clear when the
linear trend that imparts some persistence through this
season is removed (Fig. 7b).
Because the Indian Ocean SSTA is central to repro-

ducing rainfall variability over East Africa, the skill of
an AGCM will be negatively impacted by the absence of
this evolution in SSTA. The loss in skill seen over East
Africa (Fig. 2b-upper versus 2b-lower) appears primar-
ily due to errors in prescribed SSTA over the Indian
Ocean, as shown by the first CCA mode of the precipi-
tation and SSTA difference fields (Fig. 8). When an El
Niño event grows, positive SSTAs develop in the Indian
Ocean that are larger in SON than in August. With the
positive SSTA in the central Indian Ocean comes
increased rainfall over East Africa, so persisting August
SSTA through SON will lead to less rainfall over East
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Africa than seen in the simulations (Fig. 8). Notice also
that the strongest loading in the SST pattern shown in
Fig. 8 coincides largely with the areas of weakest cor-
relation of August versus November SSTA (Fig. 7b).
Furthermore, the time series of the SSTA difference
pattern correlates significantly to the change in
NINO3.4 from August to SON (r= 0.45) (r= 0.34 for
the actual SON NINO3.4 index). Both of these findings

suggest that rapid evolution of ENSO is related to the
lack of persistence in the Indian Ocean during SON.
Unlike the case of West African rainfall and Atlantic

Ocean SSTA, the outlook for East Africa predictability
is more promising. The strong influence of the tropical
Pacific variability, which is largely predictable, especially
once the evolution of an ENSO event has begun
(Landsea and Knaff 2000; Landman and Mason 2001),
and the relatively slow time scale of that evolution, im-
plies that predictions for the Indian Ocean can improve
upon persistence. Even the simplest of predictions of
Indian Ocean SSTA for SON based on tropical Pacific
temperatures improves upon persistence over most of
the Indian Ocean. Root mean squared errors are smaller
over most of the Indian Ocean basin for predictions of
SON SSTA by using a simple linear regression model
with August NINO3.4 anomalies as the only predictor
compared to using persistence of August SSTA (not
shown). Using more sophisticated models to predict
Indian Ocean sea temperature anomalies, further im-
provements may be achieved, and it seems reasonable to
expect these improvements to result in more accurate
forecasts of SON precipitation of eastern Africa.

4 Discussion and summary

Sea surface temperature anomalies (SSTAs), especially
in the tropics, typically vary slowly enough that a pre-
diction of persistence is difficult to beat at lead times out

Fig. 7. Anomaly correlation between August SSTA and November SSTA 1970–1996, for a actual anomalies; b linearly de-trended
anomalies. Contour interval is 0.2, and 0-contour is drawn heavily. Anomaly correlations exceeding 0.4 are shaded

Fig. 8. Same as Fig. 5, but for SON 1970–1996 over the tropical
Indian/eastern Africa region. dSSTA = observed SON SSTA –
persisted August SSTA

628 Goddard and Mason: Sensitivity of seasonal climate forecasts to persisted SST anomalies



to three or four months. However, when atmospheric
general circulation models (AGCMs) are used to predict
seasonal climate, errors in the predicted SSTs can
translate into significant losses in predictive skill. By
comparing long historical runs of an AGCM forced with
both observed SSTs and persisted SSTA, the errors in-
troduced by these imperfect boundary conditions are
revealed. Although the particular details of the results
may be specific to SSTA that is predicted to persist, the
analysis methodology can be applied similarly to retro-
spective AGCM forecasts using SSTA predicted to
evolve.
Operational skill levels of AGCMs must include the

uncertainty inherent in the SST predictions. As perfect
predictions of global SSTA are not possible, operational
skill levels of AGCMs are expected to be lower than that
of the simulations, regardless of the SSTA prediction
method. Under persisted SSTA forcing the ECHAM3.6
AGCM retains much of the precipitation skill seen un-
der simulation forcing. However, several regions that
exhibit good simulation skill are poorly predicted in an
operational setting using persisted SSTA. Even over
regions for which true prediction skill remains signifi-
cant, the magnitude of the skill measure is often reduced
implying that skill levels will be overestimated if based
only on simulation runs.
Systematic biases in a model’s response to predicted

SSTs must also be quantified. Biases introduced by the
particular SST forecast strategy are likely to be trans-
lated into biases in the ensemble distribution. Such biases
directly affect the interpretation of the strength of a
seasonal climate anomaly and its associated uncertainty
by altering the mean seasonal signal and/or noise char-
acteristics. Although signal-to-noise ratios are often used
to indicate potential predictability in a model, regional
changes in signal-to-noise do not appear responsible for
the loss of skill in the ECHAM3.6 runs. Rather, relative
to the simulations, the persisted SSTA runs typically
yield a stronger signal-to-noise ratio for precipitation in
regions where correlation skill is weaker. The change in
signal-to-noise characteristics results primarily from an
increase in the local precipitation signal with little change
in the regional noise levels. If not properly accounted for,
such a bias would lead a forecaster to suggest that the
magnitude of a seasonal rainfall anomaly will be much
stronger than is actually being indicated. The enhance-
ment of signal, particularly in the tropics, may be related
to the fixed pattern of SSTA forcing the AGCM for the
three month season in places where the observed SSTA is
more variable from month to month. Such a hypothesis
would require regional precipitation to respond non-
linearly to local SSTA. Preliminary analysis suggests this
is possible, but it is not conclusive, requiring further ex-
perimentation. The enhancement of signal may also be
due to important changes in the magnitude of local SSTA
variance, such as that due to the seasonal evolution of
SSTA variance patterns.
The systematic differences apparent between the

simulation and persisted hindcast runs and the

SST-related causes for those differences were examined
through two case studies. In West Africa during the JJA
rainy season, errors in the SSTAs over the tropical At-
lantic contribute most significantly to loss of skill over
the region. The structure of the SSTA error is well de-
fined with a maximum of one sign along the equatorial
Atlantic and a maximum of opposite sign off the western
coast of West Africa, from Mauritania to Liberia. This
error pattern in SSTA results in an erroneous meridional
shift of the ITCZ analogous to the relationship between
interannual tropical Atlantic SST variability and West
Africa rainfall variability that has been well document-
ed. However, the evolution of SSTA in the tropical
Atlantic from May to August is noisy, and may not be
easily predictable. The SSTA error in the tropical At-
lantic during JJA does bear some resemblance to the
seasonal evolution of SSTA variance. Regions where
locally high variance dies off rapidly during the forecast
season could be preferentially damped, although be-
cause important variability does develop in the equato-
rial Atlantic during the JJA season, this variability
would remain unpredicted using modified persistence.
At this time statistical and dynamical predictions of
equatorial and south Atlantic SSTA cannot beat per-
sistence, thus the potential to predict JJA (or JAS)
rainfall over West Africa using SST information prior to
June remains low.
The second case study focused on East Africa dur-

ing the SON rainy season. Here, errors in the Indian
Ocean SSTA are responsible for loss of skill in the
persisted hindcasts. These errors are largely due to the
influence of the tropical Pacific on SSTA variability in
the Indian Ocean. Since ENSO events undergo rapid
growth during the middle of the year, and their impact
on the Indian Ocean is seen approximately three
months later, SON represents a season of potentially
rapidly changing SSTA in the Indian Ocean. Persisting
August SSTA misses this evolution in the Indian Ocean
leading to substantial discrepancies in the rainfall
anomalies over East Africa. The strong relationship
between the Indian Ocean and the Pacific Ocean sug-
gests that predictions of the statistical evolution of
SSTA over the Indian Ocean can improve upon per-
sistence.
As illustrated in these case studies, identifying in what

way the imperfect SST predictions are biasing the model
response, such as the sign, magnitude, and/or intra-
ensemble variance, and in what regions the imperfect
SST predictions are most influential are important steps
towards improving SST predictions and associated
climate predictions.
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